Automatic Segmentation and Components Classification of Optic Pathway Gliomas in MRI
نویسندگان
چکیده
We present a new method for the automatic segmentation and components classification of brain Optic Pathway Gliomas (OPGs) from multi-spectral MRI datasets. Our method accurately identifies the sharp OPG boundaries and consistently delineates the missing contours by effectively incorporating prior location, shape, and intensity information. It then classifies the segmented OPG volume into its three main components--solid, enhancing, and cyst--with a probabilistic tumor tissue model generated from training datasets that accounts for the datasets grey-level differences. Experimental results on 25 datasets yield a mean OPG boundary surface distance error of 0.73mm and mean volume overlap difference of 30.6% as compared to manual segmentation by an expert radiologist. A follow-up patient study shows high correlation between the clinical tumor progression evaluation and the component classification results. To the best of our knowledge, ours is the first method for automatic OPG segmentation and component classification that may support quantitative disease progression and treatment efficacy evaluation.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAutomatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI
This paper presents an automatic method for the segmentation, internal classification and follow-up of optic pathway gliomas (OPGs) from multi-sequence MRI datasets. Our method starts with the automatic localization of the OPG and its core with an anatomical atlas followed by a binary voxel classification with a probabilistic tissue model whose parameters are estimated from the MR images. The m...
متن کاملAutomatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 1 شماره
صفحات -
تاریخ انتشار 2010